Skip to main content
Version: v2.0.8

Helm Charts

Now we can deploy all components of Dragonfly in Kubernetes cluster. We deploy scheduler and seed peer as StatefulSets, daemon as DaemonSets, manager as Deployments.

Prerequisites

  • Kubernetes cluster 1.20+
  • Helm v3.8.0+

Runtime Configuration Guide for Dragonfly Helm Chart

When enable runtime configuration in dragonfly, you can skip Configure Runtime manually.

1. Docker

We did not recommend to using dragonfly with docker in Kubernetes due to many reasons: no fallback image pulling policy. deprecated in Kubernetes. Because the original daemonset in Kubernetes did not support Surging Rolling Update policy. When kill current dfdaemon pod, the new pod image can not be pulled anymore. If you can not change runtime from docker to others, remind to choose a plan when upgrade dfdaemon: pull newly dfdaemon image manually before upgrade dragonfly, or use ImagePullJob to pull image automate. keep the image registry of dragonfly is different from common registries and add host in containerRuntime.docker.skipHosts.

Dragonfly helm supports config docker automatically.

Config cases:

Case 1: [Preferred] Implicit registries support without restart docker

Chart customize values.yaml:

containerRuntime:
docker:
enable: true
# -- Inject domains into /etc/hosts to force redirect traffic to dfdaemon.
# Caution: This feature need dfdaemon to implement SNI Proxy, confirm image tag is greater than v2.0.0.
# When use certs and inject hosts in docker, no necessary to restart docker daemon.
injectHosts: true
registryDomains:
- 'harbor.example.com'
- 'harbor.example.net'

This config enables docker pulling images from registries harbor.example.com and harbor.example.net via Dragonfly. When deploying Dragonfly with above config, it's unnecessary to restart docker daemon.

Advantages:

  • Support upgrade dfdaemon smoothness

In this mode, when dfdaemon pod deleted, the preStop hook will remove all injected hosts info in /etc/hosts, all images traffic fallbacks to original registries.

Limitations:

  • Only support implicit registries

Case 2: Arbitrary registries support with restart docker

Chart customize values.yaml:

containerRuntime:
docker:
enable: true
# -- Restart docker daemon to redirect traffic to dfdaemon
# When containerRuntime.docker.restart=true, containerRuntime.docker.injectHosts and containerRuntime.registry.domains is ignored.
# If did not want restart docker daemon, keep containerRuntime.docker.restart=false and containerRuntime.docker.injectHosts=true.
restart: true
skipHosts:
- '127.0.0.1'
- 'docker.io' # Dragonfly use this image registry to upgrade itself, so we need skip it. Change it in real environment.

This config enables docker pulling images from arbitrary registries via Dragonfly. When deploying Dragonfly with above config, dfdaemon will restart docker daemon.

Advantages:

  • Support arbitrary registries

Limitations:

  • Must enable live-restore feature in docker
  • Need restart docker daemon
  • When upgrade dfdaemon, new image must be pulled beforehand.

2. Containerd

The config of containerd has two version with complicated fields. These are many cases to consider:

Case 1: Version 2 config with config_path

There is config_path in /etc/containerd/config.toml:

[plugins."io.containerd.grpc.v1.cri".registry]
config_path = "/etc/containerd/certs.d"

This case is very simple to enable multiple registry mirrors support.

Chart customize values.yaml:

containerRuntime:
containerd:
enable: true

Case 2: Version 2 config without config_path

  • Option 1 - Allow charts to inject config_path and restart containerd.

    This option also enable multiple registry mirrors support.

    Caution: if there are already many other mirror config in config.toml, should not use this option, or migrate your config with config_path.

    Chart customize values.yaml:

    containerRuntime:
    containerd:
    enable: true
    injectConfigPath: true
  • Option 2 - Just mirror only one registry which dfdaemon.config.proxy.registryMirror.url is Chart customize values.yaml:

    containerRuntime:
    containerd:
    enable: true

Case 3: Version 1

With version 1 config.toml, only support the registry which dfdaemon.config.proxy.registryMirror.url is.

Chart customize values.yaml:

containerRuntime:
containerd:
enable: true

3. [WIP] CRI-O

DON'T USE, Work in progress

Dragonfly helm supports config CRI-O automatically with drop-in registries.

Chart customize values.yaml:

containerRuntime:
crio:
# -- Enable CRI-O support
# Inject drop-in mirror config into /etc/containers/registries.conf.d.
enable: true
# Registries full urls
registries:
- 'https://ghcr.io'
- 'https://quay.io'
- 'https://harbor.example.com:8443'

Prepare Kubernetes Cluster

If there is no available Kubernetes cluster for testing, minikube is recommended. Just run minikube start.

Install Dragonfly

Install with default configuration

helm repo add dragonfly https://dragonflyoss.github.io/helm-charts/
helm install --create-namespace --namespace dragonfly-system --version 0.8.8 dragonfly dragonfly/dragonfly

Install with custom configuration

Create the values.yaml configuration file. It is recommended to use external redis and mysql instead of containers.

The example uses external mysql and redis. Refer to the document for configuration.

mysql:
enable: false

externalMysql:
migrate: true
host: mysql-host
username: dragonfly
password: dragonfly
database: manager
port: 3306

redis:
enable: false

externalRedis:
host: redis-host
password: dragonfly
port: 6379

Install dragonfly with values.yaml.

helm repo add dragonfly https://dragonflyoss.github.io/helm-charts/
helm install --create-namespace --namespace dragonfly-system --version 0.8.8 \
dragonfly dragonfly/dragonfly -f values.yaml

Install with an existing manager

Create the values.yaml configuration file. Need to configure the cluster id associated with scheduler and seed peer.

The example is to deploy a cluster using the existing manager and redis. Refer to the document for configuration.

scheduler:
config:
manager:
schedulerClusterID: 1

seedPeer:
config:
scheduler:
manager:
seedPeer:
clusterID: 1

manager:
enable: false

externalManager:
enable: true
host: 'dragonfly-manager.dragonfly-system.svc.cluster.local'
restPort: 8080
grpcPort: 65003

redis:
enable: false

externalRedis:
host: redis-host
password: dragonfly
port: 6379

mysql:
enable: false

Wait Dragonfly Ready

Wait all pods running

kubectl -n dragonfly-system wait --for=condition=ready --all --timeout=10m pod

Manager Console

The console page will be displayed on dragonfly-manager.dragonfly-system.svc.cluster.local:8080.

If you need to bind Ingress, you can refer to configuration options of Helm Charts, or create it manually.

Console features preview reference document console preview.

Configure Runtime Manually

Use Containerd with CRI as example, more runtimes can be found here

This example is for single registry, multiple registries configuration is here

For private registry:

# explicitly use v2 config format, if already v2, skip the "version = 2"
version = 2
[plugins."io.containerd.grpc.v1.cri".registry.mirrors."harbor.example.com"]
endpoint = ["http://127.0.0.1:65001", "https://harbor.example.com"]

For docker public registry:

# explicitly use v2 config format, if already v2, skip the "version = 2"
version = 2
[plugins."io.containerd.grpc.v1.cri".registry.mirrors."docker.io"]
endpoint = ["http://127.0.0.1:65001", "https://index.docker.io"]

Add above config to /etc/containerd/config.toml and restart Containerd

systemctl restart containerd

Using Dragonfly

After all above steps, create a new pod with target registry. Or just pull an image with crictl:

crictl harbor.example.com/library/alpine:latest
crictl pull docker.io/library/alpine:latest

After pulled images, find logs in dfdaemon pod:

# find pods
kubectl -n dragonfly-system get pod -l component=dfdaemon
# find logs
pod_name=dfdaemon-xxxxx
kubectl -n dragonfly-system exec -it ${pod_name} -- grep "peer task done" /var/log/dragonfly/daemon/core.log

Example output:

{
"level":"info",
"ts":"2022-09-07 12:04:26.485",
"caller":"peer/peertask_conductor.go:1500",
"msg":"peer task done, cost: 1ms",
"peer":"10.140.2.175-5184-1eab18b6-bead-4b9f-b055-6c1120a30a33",
"task":"b423e11ddb7ab19a3c2c4c98e5ab3b1699a597e974c737bb4004edeef6016ed2",
"component":"PeerTask"
}